3.310 \(\int \cot ^3(e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=116 \[ \frac{\sqrt{a} (2 a-3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{2 f}-\frac{(a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f}-\frac{a \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 f} \]

[Out]

(Sqrt[a]*(2*a - 3*b)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]])/(2*f) - ((a - b)^(3/2)*ArcTanh[Sqrt[a + b*Ta
n[e + f*x]^2]/Sqrt[a - b]])/f - (a*Cot[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2])/(2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.173893, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {3670, 446, 98, 156, 63, 208} \[ \frac{\sqrt{a} (2 a-3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{2 f}-\frac{(a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f}-\frac{a \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^3*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(Sqrt[a]*(2*a - 3*b)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]])/(2*f) - ((a - b)^(3/2)*ArcTanh[Sqrt[a + b*Ta
n[e + f*x]^2]/Sqrt[a - b]])/f - (a*Cot[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2])/(2*f)

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot ^3(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b x^2\right )^{3/2}}{x^3 \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{(a+b x)^{3/2}}{x^2 (1+x)} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=-\frac{a \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 f}-\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{2} a (2 a-3 b)+\frac{1}{2} (a-2 b) b x}{x (1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=-\frac{a \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 f}-\frac{(a (2 a-3 b)) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{4 f}+\frac{(a-b)^2 \operatorname{Subst}\left (\int \frac{1}{(1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=-\frac{a \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 f}-\frac{(a (2 a-3 b)) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan ^2(e+f x)}\right )}{2 b f}+\frac{(a-b)^2 \operatorname{Subst}\left (\int \frac{1}{1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan ^2(e+f x)}\right )}{b f}\\ &=\frac{\sqrt{a} (2 a-3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{2 f}-\frac{(a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f}-\frac{a \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 f}\\ \end{align*}

Mathematica [A]  time = 0.328544, size = 109, normalized size = 0.94 \[ \frac{\sqrt{a} (2 a-3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )-2 (a-b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )-a \cot ^2(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^3*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(Sqrt[a]*(2*a - 3*b)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]] - 2*(a - b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[e +
f*x]^2]/Sqrt[a - b]] - a*Cot[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2])/(2*f)

________________________________________________________________________________________

Maple [B]  time = 0.221, size = 2011, normalized size = 17.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(3/2),x)

[Out]

1/8/f/(a-b)^(1/2)*4^(1/2)*(cos(f*x+e)-1)^2*(2*cos(f*x+e)*ln(-2/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+
e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2
*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*a^(3/2)*(a-b)^(1/2)-2*cos(f*x+e)*ln(-4*(cos(f*x+e)*((a*
cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(
f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/(cos(f*x+e)-1))*a^(3/2)*(a-b)^(1/2)-3*cos(f*x+e)*ln(-2/a^(1/2
)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b
*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*a^(1/2)*(a-b)^
(1/2)*b+3*cos(f*x+e)*ln(-4*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(
f*x+e)*a-b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/(cos(f*x+e)-1))*a^
(1/2)*(a-b)^(1/2)*b-2*a^(3/2)*ln(-2/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos
(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/
2)*a^(1/2)+b)/sin(f*x+e)^2)*(a-b)^(1/2)+2*a^(3/2)*ln(-4*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*
x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*
a^(1/2)+b)/(cos(f*x+e)-1))*(a-b)^(1/2)-2*cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)
*(a-b)^(1/2)*a+4*cos(f*x+e)*ln(4*cos(f*x+e)*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(
1/2)+4*cos(f*x+e)*a-4*b*cos(f*x+e)+4*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2))*a
^2-8*cos(f*x+e)*ln(4*cos(f*x+e)*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+4*cos(f
*x+e)*a-4*b*cos(f*x+e)+4*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2))*a*b+4*cos(f*x
+e)*ln(4*cos(f*x+e)*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+4*cos(f*x+e)*a-4*b*
cos(f*x+e)+4*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2))*b^2+3*a^(1/2)*b*ln(-2/a^(
1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*
a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*(a-b)^(1/2)
-3*a^(1/2)*ln(-4*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b
*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/(cos(f*x+e)-1))*b*(a-b)^(1/2
)-4*ln(4*cos(f*x+e)*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+4*cos(f*x+e)*a-4*b*
cos(f*x+e)+4*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2))*a^2+8*ln(4*cos(f*x+e)*(a-
b)^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+4*cos(f*x+e)*a-4*b*cos(f*x+e)+4*(a-b)^(1/2
)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2))*a*b-4*ln(4*cos(f*x+e)*(a-b)^(1/2)*((a*cos(f*x+e)
^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)+4*cos(f*x+e)*a-4*b*cos(f*x+e)+4*(a-b)^(1/2)*((a*cos(f*x+e)^2-cos(
f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2))*b^2)*cos(f*x+e)^3*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/cos(f*x+e)^2)^(3/2
)/((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(3/2)/sin(f*x+e)^6

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \cot \left (f x + e\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^3, x)

________________________________________________________________________________________

Fricas [A]  time = 1.8665, size = 1485, normalized size = 12.8 \begin{align*} \left [-\frac{2 \,{\left (a - b\right )}^{\frac{3}{2}} \log \left (\frac{b \tan \left (f x + e\right )^{2} + 2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{a - b} + 2 \, a - b}{\tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right )^{2} +{\left (2 \, a - 3 \, b\right )} \sqrt{a} \log \left (\frac{b \tan \left (f x + e\right )^{2} - 2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{a} + 2 \, a}{\tan \left (f x + e\right )^{2}}\right ) \tan \left (f x + e\right )^{2} + 2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} a}{4 \, f \tan \left (f x + e\right )^{2}}, -\frac{4 \,{\left (a - b\right )} \sqrt{-a + b} \arctan \left (-\frac{\sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{-a + b}}{a - b}\right ) \tan \left (f x + e\right )^{2} +{\left (2 \, a - 3 \, b\right )} \sqrt{a} \log \left (\frac{b \tan \left (f x + e\right )^{2} - 2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{a} + 2 \, a}{\tan \left (f x + e\right )^{2}}\right ) \tan \left (f x + e\right )^{2} + 2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} a}{4 \, f \tan \left (f x + e\right )^{2}}, -\frac{\sqrt{-a}{\left (2 \, a - 3 \, b\right )} \arctan \left (\frac{\sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{-a}}{a}\right ) \tan \left (f x + e\right )^{2} +{\left (a - b\right )}^{\frac{3}{2}} \log \left (\frac{b \tan \left (f x + e\right )^{2} + 2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{a - b} + 2 \, a - b}{\tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right )^{2} + \sqrt{b \tan \left (f x + e\right )^{2} + a} a}{2 \, f \tan \left (f x + e\right )^{2}}, -\frac{\sqrt{-a}{\left (2 \, a - 3 \, b\right )} \arctan \left (\frac{\sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{-a}}{a}\right ) \tan \left (f x + e\right )^{2} + 2 \,{\left (a - b\right )} \sqrt{-a + b} \arctan \left (-\frac{\sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{-a + b}}{a - b}\right ) \tan \left (f x + e\right )^{2} + \sqrt{b \tan \left (f x + e\right )^{2} + a} a}{2 \, f \tan \left (f x + e\right )^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*(2*(a - b)^(3/2)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 2*a - b)/(tan(f*x +
e)^2 + 1))*tan(f*x + e)^2 + (2*a - 3*b)*sqrt(a)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) +
 2*a)/tan(f*x + e)^2)*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*a)/(f*tan(f*x + e)^2), -1/4*(4*(a - b)*sqr
t(-a + b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)/(a - b))*tan(f*x + e)^2 + (2*a - 3*b)*sqrt(a)*log((b
*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2)*tan(f*x + e)^2 + 2*sqrt(b*tan(f*
x + e)^2 + a)*a)/(f*tan(f*x + e)^2), -1/2*(sqrt(-a)*(2*a - 3*b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a)/a)*
tan(f*x + e)^2 + (a - b)^(3/2)*log((b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 2*a - b)/(ta
n(f*x + e)^2 + 1))*tan(f*x + e)^2 + sqrt(b*tan(f*x + e)^2 + a)*a)/(f*tan(f*x + e)^2), -1/2*(sqrt(-a)*(2*a - 3*
b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a)/a)*tan(f*x + e)^2 + 2*(a - b)*sqrt(-a + b)*arctan(-sqrt(b*tan(f*
x + e)^2 + a)*sqrt(-a + b)/(a - b))*tan(f*x + e)^2 + sqrt(b*tan(f*x + e)^2 + a)*a)/(f*tan(f*x + e)^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**3*(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \cot \left (f x + e\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^3, x)